Deviance information criterion (DIC) in Bayesian multiple QTL mapping
نویسندگان
چکیده
منابع مشابه
Deviance information criterion (DIC) in Bayesian multiple QTL mapping
Mapping multiple quantitative trait loci (QTL) is commonly viewed as a problem of model selection. Various model selection criteria have been proposed, primarily in the non-Bayesian framework. The deviance information criterion (DIC) is the most popular criterion for Bayesian model selection and model comparison but has not been applied to Bayesian multiple QTL mapping. A derivation of the DIC ...
متن کاملBayesian mixture structural equation modelling in multiple-trait QTL mapping.
Quantitative trait loci (QTLs) mapping often results in data on a number of traits that have well-established causal relationships. Many multi-trait QTL mapping methods that account for correlation among the multiple traits have been developed to improve the statistical power and the precision of QTL parameter estimation. However, none of these methods are capable of incorporating the causal st...
متن کاملBayesian LASSO for QTL Mapping
Mapping quantitative trait loci (QTL) is to identify molecular markers or genomic loci that influence the variation of complex traits. The problem is complicated by the facts that QTL data usually contain a large number of markers across the entire genome and most of them have little or no effect on the phenotype. In this paper, we propose several Bayesian hierarchical models for mapping multip...
متن کاملR/qtl: high-throughput multiple QTL mapping
MOTIVATION R/qtl is free and powerful software for mapping and exploring quantitative trait loci (QTL). R/qtl provides a fully comprehensive range of methods for a wide range of experimental cross types. We recently added multiple QTL mapping (MQM) to R/qtl. MQM adds higher statistical power to detect and disentangle the effects of multiple linked and unlinked QTL compared with many other metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2009
ISSN: 0167-9473
DOI: 10.1016/j.csda.2008.01.016